MATRIKS
Matriks adalah susunan kumpulan bilangan yang di atur dalam baris dan kolom berbentuk persegi panjang. Matrik di cirikan dengan elemen-elemen penyusun yang diapit oleh tanda kurung siku [ ] atau tanda kurung biasa ( ).
Ukuran sebuah matrik dinyatakan dalam satuan ordo, yaitu banyaknya baris dan kolom dalam matriks tersebut. Ordo merupakan karakteristik suatu matriks yang menjadi patokan dalam oprasi-oprasi antar matriks.
Matriks pada umumnya di simbolkan seperti berikut ini :
Keterangan :
A = nama matrik
m = banyak baris
n = banyak kolom
m x n = ordo matriks
Amxn =artinya elemen matrik baris ke-m kolom ke-n.
JENIS-JENIS MATRIKS
Matriks Persegi
Matriks persegi adalah suatu matriks yang memiliki banyaknya baris sama dengan banyaknya kolom.
Contoh :
Matriks Baris
Matriks yang hanya mempunyai satu baris saja disebut matriks baris. Ordo matriks baris ditulis (1xn) dengan n > 1, dan bilangan asli.
Contoh :
Matriks Kolom
Matriks yang hanya mempunyai satu kolom saja disebut matriks kolom. Ordo matriks kolo ditulis (mx1) dengan m ≥ 2, dan bilangan Asli.
Contoh:
Matriks Diagonal
Matriks diagonal adalah matriks persegi yang semua elemen atau unsur di luar diagonal utamanya adalah nol.
Contoh:
Matriks Identitas
Suatu matriks dikatakn identitas, apabila diagonal yang elemen-elemen atau unsure-unsur diagonal utama bernilai 1 (satu).
Contoh:
Matriks Nol
Dikatakan sebagai matriks nol, apabila semua elemen atau unsurnya adalah nol.
Contoh :
Matriks Simetris/Setangkap
Matriks Simetris adalah matriks persegi yang unsur padabaris ke-n dan kolom ke-m sama dengan unsure pada baris ke-m kolom ke-n.
Contoh:
Matriks Segitiga
Matriks segitiga adalah matriks persegi yang mempunyai elemen-elemen di atas diagonal utamanya bernilai nol atai elemen-elemen di bawah diagonal utamanya bernilai nol.
Contoh:
TRANSPOSE MATRIKS
Transpose dari suatu matriks Amxn dapat dibentuk dengan cara menukarkan baris matriks A menjadi kolom matriks baru dan kolom matriks A menjadi matriks baru. Matriks baru dinyatakan dengan lambang :
Contoh:
KESAMAAN DUA MATRIKS
Dua buah matriks A dan B dikatakan sama (ditulis A=B), jika dan hanya jika kedua matriks itu mempunyai ordo yang sama dan elemen-elemen yang seletaknya sama. Karena menggunakan “jika dan hanya jika” maka pengertian ini berlaku menurut dua arah, yaitu:
Jika A=B maka haruslah ordo kedua matriks itu sama, dan elemen-elemen yang seletak sama.
Jika dua buah matriks mempunyai ordo yang sma, elemen-elemen yang seletak juga sama maka A=B.
Contoh 1:
Contoh 2:
OPERASI ALJABAR PADA MATRIKS
Penjumlahan Matriks
Jika A dan B dua buah matriks berordo sama maka jumlah matriks A dan B ditulis A+B adalah sebuah matriks baru C yang diperoleh dengan menjumlahkan elemen-elemen matriks A dengan elemen-elemen B yang seletak.
Pada penjumlahan belaku sifat- sifat :
a. Komutatif, A+B = B+A
b. Asosiatif, ( A+B)+C = A+(B+C)
c. Sifat lawan, A+(-A) = 0
d. Identitas penjumlahan, A+0 = A
Pengurangan Matriks
Pengurangan matriks A dengan matriks B adalah suatu matriks yang elemen-elemenya diperoleh dengan cara mengurangkan elemen matriks A dengan elemen matriks B yang besesuaian (seetak), atau dapat pula diartikan sebagai menjumlahkan matriks A dengan lawan negative dari B, dituliskan: A-B = A+(-B).
Seperti halnya pada penjumlahan dua buah matriks, pengurangan dua buah matriks pun terdefinisi apabila ordo kedua matriks tersebut sama.




Tidak ada komentar:
Posting Komentar